Classes of Operator Forms

A.S.Baluck, S.F.Vinokurov
Irkutsk State University, Russia
sacha@hotmail.ru, vin@math.isu.ru

Abstract

The paper presents a classification of the classes of operator canonical forms of Boolean functions. These representations extend well-known exclusive-or sum-of-products expressions (ESOPs). We consider constructing methods and complexities of operator representations.

1 Introduction

This paper continues our research of operator forms of Boolean functions. Our aim is to construct a hierarchy of classes of these forms.

The main idea of operator forms is based on the following representation. Some bases of F_{n} can be represented as operator images of some functions. F_{n} denotes the space of all n-variable Boolean functions.

We introduce the class of operators and construct bundles of operators. In [3, 5], there are some generating criteria of a base of F_{n} by operator images of a function f. The choice of the function f and the bundle determines the canonical forms. In particular, if we put $f=x_{1} \cdot \ldots \cdot x_{n}$, we obtain classes of ESOP.

In the paper we consider classes such as the following conditions hold: i) the classes have 'good' definitions; ii) there exist formulas to determine coefficients in representations; iii) bounds of Shannon function were found.

We compare our hierarchy with the well-known Green/Sasao hierarchy [1] and Inclusive Forms [2].

The size of this paper does not permit to present proofs and comparisons with some hierarchies [9].

2 Background

We use the following notation and abbreviations:

- vector of variables is denoted as $\tilde{x}=\left(x_{1}, \ldots, x_{n}\right)$;
— vector of constants is denoted as $\tilde{\tau}=\left(\tau_{1}, \ldots, \tau_{n}\right)$, where $\tau_{i} \in\{0,1\}, \tilde{0}=(0, \ldots, 0), \tilde{1}=(1, \ldots, 1)$,
- vector $\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ is denoted by $\overline{\tilde{x}}$;
- symbol \sum are used for summation modulo 2 .

A sequence $t=t_{1} \ldots t_{n}$ with components $t_{i} \in\{e, p, d\}$ is called an operator; here n is called the dimension of operator t and denoted by dim t. An operator $t=t_{1} \ldots t_{n}$ regarded as a map $\mathrm{t}: F_{n} \rightarrow F_{n}$ is defined by the rule $\mathrm{t} g(\tilde{x})=g_{n}(\tilde{x})$, where $g_{0}(\tilde{x})=g(\tilde{x})$ and

$$
g_{i}(\tilde{x})= \begin{cases}g_{i-1}(\tilde{x}) & \text { if } \mathrm{t}_{i}=\mathrm{e} \\ g_{i-1}\left(x_{1}, \ldots, x_{i-1}, \bar{x}_{i}, x_{i+1}, \ldots, x_{n}\right) & \text { if } \mathrm{t}_{i}=\mathrm{p} \\ \partial g_{i-1} / \partial x_{i} & \text { if } \mathrm{t}_{i}=\mathrm{d}\end{cases}
$$

Note that $\partial g / \partial x_{i}$ is called the derivative of g with respect to a variable x_{i} and is defined as

$$
\partial g / \partial x_{i}=g(\tilde{x}) \oplus g\left(x_{1}, \ldots, x_{i-1}, \bar{x}_{i}, x_{i+1}, \ldots, x_{n}\right)
$$

Example Consider the operator $\mathrm{t}=\mathrm{epd}$ and the function $g\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \vee x_{2} \vee x_{3}$. We have $g_{0}=x_{1} \vee x_{2} \vee x_{3}, \quad g_{1}=x_{1} \vee x_{2} \vee x_{3}, \quad g_{3}=x_{1} \vee \bar{x}_{2} \vee x_{3}, \quad g_{4}=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \oplus\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)=\bar{x}_{1} x_{2}$.

Thus we have $\operatorname{epd}(g)=\bar{x}_{1} x_{2}$.

A sequence $T=\left(\mathrm{t}^{\tilde{0}}, \ldots, \mathrm{t}^{\tilde{\tau}}, \ldots, \mathrm{t}^{\tilde{1}}\right)$ consisting of 2^{n} operators with the same dimensions is called a bundle of operators; here n is called the dimension of the bundle and is denoted by $\operatorname{dim} \mathrm{T}$.

A bundle of operators ($\mathrm{t}^{\tilde{0}}, \ldots, \mathrm{t}^{\tilde{\tau}}, \ldots, \mathrm{t}^{\tilde{1}}$) is called a base bundle if there exists a function $g\left(x_{1}, \ldots, x_{n}\right)$ such that $\left\{\mathrm{t}^{\tilde{0}} g, \ldots, \mathrm{t}^{\tilde{\tau}} g, \ldots, \mathrm{t}^{\tilde{1}} g\right\}$ is a basis for F_{n}, i.e., for any function $f \in F_{n}$ there exists a unique representation

$$
\begin{equation*}
f=\sum_{\tilde{\tau}} \alpha_{\tilde{\tau}} \mathrm{t}^{\tilde{\tau}} g, \text { where } \alpha_{\tilde{\tau}} \in\{0,1\} . \tag{*}
\end{equation*}
$$

This representation is called a canonical operator form.
By definition, put

$$
L_{\mathrm{T}}^{g}(f)=\sum_{\tilde{\tau}} \alpha_{\tilde{\tau}} .
$$

Let K be a class of base bundles; then define the complexity $L_{K}^{g}(f)$ by the rule

$$
L_{K}^{g}(f)=\min _{\mathrm{T} \in K} L_{\mathrm{T}}^{g}(f)
$$

and define Shannon function by the rule

$$
L_{K}^{g}(n)=\max _{f \in F_{n}} L_{K}^{g}(f)
$$

Example Suppose $g=x_{1} x_{2} x_{3}$ is a function, $\mathrm{T}=$ (eee, eep, epe, epp, pee, pep, ppe, ppp) is a bundle of operators. Then we have

$$
\begin{aligned}
& \operatorname{eee}(g)=x_{1} x_{2} x_{3} \quad \text { eep }(g)=x_{1} x_{2} \bar{x}_{3} \quad \text { ере }(g)=x_{1} \bar{x}_{2} x_{3} \quad \text { ерр }(g)=x_{1} \bar{x}_{2} \bar{x}_{3} \\
& \operatorname{pee}(g)=\bar{x}_{1} x_{2} x_{3} \quad \operatorname{pep}(g)=\bar{x}_{1} x_{2} \bar{x}_{3} \quad \operatorname{ppe}(g)=\bar{x}_{1} \bar{x}_{2} x_{3} \quad \operatorname{ppp}(g)=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3} .
\end{aligned}
$$

Theorem 2.1 [3] Suppose $T=\left(\mathrm{t}^{\tilde{0}}, \ldots, \mathrm{t}^{\tilde{\tau}}, \ldots, \mathrm{t}^{\tilde{\mathrm{I}}}\right)$ is a base bundle; then $\mathrm{t}^{\tilde{0}} g, \ldots, \mathrm{t}^{\tilde{\tau}} g, \ldots, \mathrm{t}^{\tilde{1}} g$ is a basis for F_{n} iff $\sum_{\tilde{\tau}} g(\tilde{\tau})=1$.

A function is called a base function if $\sum_{\tilde{\tau}} g(\tilde{\tau})=1$.
Theorem 2.2 [3] Suppose K is a class of base bundles, g and h are base functions; then

$$
L_{K}^{g}(n)=L_{K}^{h}(n) .
$$

By definition, put $L_{K}(n)=L_{K}^{g}(n)$, where g is any base function. If $g=x_{1} \cdot \ldots \cdot x_{n}$ then we write $L_{K}^{\&}(f)$ instead of $L_{K}^{g}(f)$.

A bundle $T=\left(t^{\tilde{0}}, \ldots, t^{\tilde{1}}\right)$ is called two-generated if there exist operators a and b such that $\mathrm{a}_{i} \neq \mathrm{b}_{i}$ and

$$
\mathrm{t}_{i}^{\tilde{\tau}}= \begin{cases}\mathrm{a}_{i} & \text { if } \tau_{i}=0 \\ \mathrm{~b}_{i} & \text { if } \tau_{i}=1\end{cases}
$$

This bundle is denoted by $D(\mathrm{a}, \mathrm{b})$.
For example, the bundle ($\mathrm{dpe}, \mathrm{dpd}$, dde, ddd, ppe, ppd, pde,pdd) is two-generated by dpe and pdd.

A bundle $T=\left(t^{\tilde{0}}, \ldots, t^{\tilde{1}}\right)$ is called one-generated by an operator $a=a_{1} \ldots a_{n}$ if

$$
\mathrm{t}_{i}^{\tilde{\tau}}=\mathrm{a}_{i} \quad \text { if } \tau_{i}=0, \quad \mathrm{t}_{i}^{\tilde{\tau}} \neq \mathrm{a}_{i} \quad \text { if } \tau_{i}=1
$$

As an example, the bundle (dpe, dpd, dde, ded, ppe, ppd, eee, pdp) is one-generated by dpe.
Let $T=\left(t^{\tilde{0}}, \ldots, t^{\tilde{1}}\right)$ be a two-generated bundle. It follows that there exist two operators b and c such that $\mathrm{T}=D(\mathrm{~b}, \mathrm{c})$. Let a be an operator such that $\mathrm{a}_{i} \neq \mathrm{b}_{i}$ and $\mathrm{a}_{i} \neq \mathrm{c}_{i}$ for any i. Let $B=\left(b^{\tilde{0}}, \ldots, b^{\tilde{1}}\right)$ be a bundle and let $\tilde{\sigma}$ be a vector such that $b^{\tilde{\tau}}=\mathrm{t}^{\tilde{\tau}}$ for all $\tilde{\tau} \neq \tilde{\sigma}$ and $b^{\tilde{\sigma}}=a$. Then the bundle B is called an extension of the bundle T by the operator a .

In other words, we put the operator a in the bundle T instead of one of the operators $t^{\tilde{\tau}}$.
For instance, the bundle (dpe, dpd, dde, ddd, ppe, eep, pde, pdd) is an extension of the bundle D (dpe, pdd) by the operator eep.

Let $A=\left(a^{\tilde{0}}, \ldots, a^{\tilde{1}}\right)$ be a bundle such that $\operatorname{dim} A=n$, let

$$
\left\{\mathrm{B}_{\tilde{\tau}} \mid \mathrm{B}_{\tilde{\tau}}=\left(\mathrm{b}_{\tilde{\tau}}^{\tilde{0}}, \ldots, \mathrm{~b}_{\tilde{\tau}}^{\tilde{1}}\right), \quad \tilde{\tau}=\left(\tau_{1}, \ldots, \tau_{n}\right), \quad \tau_{i} \in\{0,1\}, \quad \operatorname{dim} \mathrm{B}_{\tilde{\tau}}=m\right\}
$$

be a set consisting of 2^{n} bundles; then the bundle $C=\left(c^{\tilde{0}}, \ldots, c^{\tilde{\sigma}}, \ldots, c^{\tilde{1}}\right)$ is called the wreath product of the bundles $\mathrm{B}_{\tilde{0}}, \ldots, \mathrm{~B}_{\tilde{1}}$ by the bundle \mathcal{A} if $\operatorname{dim} \mathrm{C}=n+m$ and

$$
\mathrm{c}_{1}^{\tilde{\sigma}} \ldots \mathrm{c}_{n}^{\tilde{\sigma}}=\mathrm{a}^{\tilde{\tau}}, \quad \mathrm{c}_{n+1}^{\tilde{\sigma}} \ldots \mathrm{c}_{n+m}^{\tilde{\sigma}}=\mathrm{b}_{\tilde{\tau}}^{\tilde{v}}, \quad \text { where } \tilde{\tau}=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \text { and } \tilde{v}=\left(\sigma_{n+1}, \ldots, \sigma_{n+m}\right) .
$$

The wreath product of bundles $\mathrm{B}_{\tilde{0}}, \ldots, \mathrm{~B}_{\tilde{1}}$ by the bundle A is denoted by $W\left(\mathrm{~A} \mid \mathrm{B}_{\tilde{0}}, \ldots, \mathrm{~B}_{\tilde{1}}\right)$.
Let $A=\left(a^{\tilde{0}}, \ldots, a^{\tilde{\tau}}, \ldots, a^{\tilde{1}}\right), B=\left(b^{\tilde{0}}, \ldots, b^{\tilde{\tau}}, \ldots, b^{\tilde{1}}\right)$ be bundles. If there exists a permutation $I=\left(i_{1}, \ldots, i_{n}\right)$ such that $\mathrm{b}_{j}^{\tilde{\tau}}=\mathrm{a}_{i_{j}}^{\tilde{\tau}}$, then we say that the bundle B is a permutation of the bundle A and write $\mathrm{B}=I\left(\mathrm{~A} \mid i_{1}, \ldots, i_{n}\right)$.
Example Take the bundles $A=(e e, e p, p e, d d), B_{(00)}=(e, d), B_{(01)}=(e, p), B_{(10)}=(p, d)$, $\mathrm{B}_{(11)}=(\mathrm{d}, \mathrm{p})$. Then

$$
\begin{gathered}
C=W\left(\mathrm{~A} \mid \mathrm{B}_{00}, \mathrm{~B}_{01}, \mathrm{~B}_{10}, \mathrm{~B}_{11}\right)=(\text { eee, eed, epe, epp, pep, ped, ddd, ddp }), \\
I(\mathrm{C} \mid 3,2,1)=(\text { eee, dee, epe, ppe, pep, dep, ddd,pdd })
\end{gathered}
$$

Theorem 2.3 [3]

(1) The wreath product of base bundles by a base bundle is a base bundle.
(2) Permutation of a base bundle is a base bundle.

Using Theorem 2.3, we can recursively construct base bundles.
Define the set of functions $M_{n}=\left\{p_{n}, q_{n}, r_{n}\right\}$ by induction on n :

$$
\begin{aligned}
p_{0}=0, \quad q_{0}=r_{0}=1, \\
p_{n}=x_{n} q_{n-1} \oplus \bar{x}_{n} r_{n-1}, \quad q_{n}=x_{n} r_{n-1} \oplus \bar{x}_{n} p_{n-1}, \quad r_{n}=x_{n} p_{n-1} \oplus \bar{x}_{n} q_{n-1} .
\end{aligned}
$$

In particular,

$$
\begin{array}{llll}
p_{1}=(11), & p_{2}=(1001), & p_{3}=(01111110), & p_{4}=(1110100110010111) ; \\
q_{1}=(01), & q_{2}=(1110), & q_{3}=(10010111), & q_{4}=(0111111011101001) ; \\
r_{1}=(10), & r_{2}=(0111), & r_{3}=(11101001), & r_{4}=(1001011101111110)
\end{array}
$$

Further, define the set of functions M_{n}^{*} by the rule

$$
M_{n}^{*}=\left\{f \mid f\left(x_{1}^{\sigma_{1}}, \ldots, x_{n}^{\sigma_{n}}\right) \in M_{n}, \text { where } \sigma_{i} \in\{0,1\}\right\}
$$

Let us remark that the functions \bar{p}_{n}, \bar{q}_{n}, and \bar{r}_{n} were used in [4].

3 Classes of Operator Bundles

3.1 a-Kronecker Classes

Let $a=a_{1} \ldots a_{n}$ be an operator. By definition, put

$$
K(\mathrm{a})=\left\{\mathrm{T} \mid \mathrm{T}=D(\mathrm{a}, \mathrm{~b}), \text { where } \mathrm{b}=\mathrm{b}_{1} \ldots \mathrm{~b}_{n} \text { is any operator such that } \mathrm{b}_{i} \neq \mathrm{a}_{i}\right\} .
$$

The class $K(a)$ is called a-Kronecker class.
Theorem 3.1 The following conditions hold:
(1) if $\mathrm{T} \in K(\mathrm{a})$, then T is a base bundle;
(2) if $\mathrm{T} \in K(\mathrm{a})$ and $f \in F_{n}$, then the coefficients of representation (*) are given by

$$
\alpha_{\tilde{\tau}}=\sum_{\tilde{\sigma}} h(\tilde{\sigma}) \cdot f(\tilde{\sigma}), \quad \text { where } h(\tilde{x})=\mathrm{t}^{\overline{\tilde{\tau}}} g(\overline{\tilde{x}}) ;
$$

(3) $L_{K(\mathfrak{a})}(n)=\left\lfloor\frac{2}{3} 2^{n}\right\rfloor$;
(4a) if $f \in F_{n}$ and n is odd, then $L_{K(\mathrm{~d} \ldots \mathrm{~d})}^{\&}(f)=\left\lfloor\frac{2}{3} 2^{n}\right\rfloor$ iff $f \in M_{n}^{*}$;
(4b) if $f \in F_{n}$ and n is even, then $L_{K(\mathrm{~d} \ldots \mathrm{~d})}^{\&}(f)=\left\lfloor\frac{2}{3} 2^{n}\right\rfloor$ iff $f \in M_{n}^{*} \cup N$, where $N=\left\{h \mid h=\bar{p}_{n}\left(x_{1}^{\sigma_{1}}, \ldots, x_{n}^{\sigma_{n}}\right)\right.$, where $\left.\sigma_{i} \in\{0,1\}\right\}$.
Example Consider the operator $\mathrm{a}=\mathrm{ddd}$. By definition, K (ddd) consists of the bundles:

(ddd, dde, ded, dee, edd, ede, eed, eee),	(ddd, ddp, ded, dep, edd, edp, eed, eep),
(ddd, dde, dpd, dpe, edd, ede, epd, epe),	(ddd, ddp, dpd, dpp, edd, edp, epd, epp),
d, dde, ded, dee,pdd, pde, ped, pee),	(ddd, ddp, ded, dep, pdd, pdp, ped, pep),
ddd, dde, dpd, dpe, pdd, pde, ppd, ppe),	(ddd, ddp, dpd, dpp,pdd, pdp,ppd,ppp)

Suppose $g=x_{1} \cdot x_{2} \cdot x_{3}, f=(01101101)$. Then f is represented in the following ddd-Kronecker forms:

$$
\begin{array}{ll}
f=x_{3} \oplus x_{2} \oplus x_{1} \oplus x_{1} x_{3} \oplus x_{1} x_{2} x_{3}, & f=1 \oplus \bar{x}_{3} \oplus x_{2} \oplus x_{1} \bar{x}_{3} \oplus x_{1} x_{2} \oplus x_{1} x_{2} \bar{x}_{3}, \\
f=1 \oplus x_{3} \oplus \bar{x}_{2} \oplus x_{1} \oplus x_{1} \bar{x}_{2} x_{3}, & f=\bar{x}_{3} \oplus \bar{x}_{2} \oplus x_{1} \oplus x_{1} \bar{x}_{2} \oplus x_{1} \bar{x}_{2} \bar{x}_{3}, \\
f=1 \oplus x_{2} \oplus x_{2} x_{3} \oplus \bar{x}_{1} \oplus \bar{x}_{1} x_{3} \oplus \bar{x}_{1} x_{2} x_{3}, & f=1 \oplus x_{2} \bar{x}_{3} \oplus \bar{x}_{1} \bar{x}_{3} \oplus \bar{x}_{1} x_{2} \oplus \bar{x}_{1} x_{2} \bar{x}_{3}, \\
f=x_{3} \oplus \bar{x}_{2} \oplus \bar{x}_{2} x_{3} \oplus \bar{x}_{1} \oplus \bar{x}_{1} \bar{x}_{2} x_{3}, & f=1 \oplus \bar{x}_{3} \oplus \bar{x}_{2} \bar{x}_{3} \oplus \bar{x}_{1} \oplus \bar{x}_{1} \bar{x}_{2} \oplus \bar{x}_{1} \bar{x}_{2} \bar{x}_{3} .
\end{array}
$$

We obtain $L_{K(\mathrm{ddd})}^{\&}(f)=5=\left\lfloor\frac{2}{3} 2^{3}\right\rfloor$. On the other hand, we have $f\left(x_{1}, x_{2}, x_{3}\right)=q_{3}\left(x_{1}, \bar{x}_{2}, x_{3}\right)$. It follows that $f \in M_{n}^{*}$. Combining this with Theorem 3.3 we obtain $L_{K(\mathrm{ddd})}^{\&}(f)=5$ again.

This example shows that ddd-Kronecker class contains all well-known Reed-Muller forms with fixed polarity of 3 -variable functions. It is obvious that d...d-Kronecker classes contain all Fixed Polarity Reed-Muller forms [1].

3.2 Kronecker Class

The class of all two-generated bundles is called Kronecker class and is denoted by K.
Theorem 3.2 The following conditions hold:
(1) if $\mathrm{T} \in K$, then T is a base bundle;
(2) if $\mathrm{T} \in K$ and $f \in F_{n}$, then the coefficients of representation $(*)$ are given by

$$
\alpha_{\tilde{\tau}}=\sum_{\tilde{\sigma}} h(\tilde{\sigma}) \cdot f(\tilde{\sigma}), \quad \text { where } h(\tilde{x})=\mathrm{t}^{\bar{\tau}} g(\overline{\tilde{x}})
$$

(3) $L_{K}(n)=\left\lfloor\frac{2}{3} 2^{n}\right\rfloor$;
(4) if $f \in F_{n}$, then $L_{K}^{\&}(f)=\left\lfloor\frac{2}{3} 2^{n}\right\rfloor$ iff $f \in M_{n}^{*}$.

Example Consider the function $\bar{p}_{4}=(0001011001101000)$ and the bundle $T=D(p p p p$, eeee $)$. It is obvious that $a \in K$. We have

$$
\bar{p}_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\bar{x}_{1} \bar{x}_{2} x_{3} x_{4} \oplus \bar{x}_{1} x_{2} \bar{x}_{3} x_{4} \oplus \bar{x}_{1} x_{2} x_{3} \bar{x}_{4} \oplus x_{1} \bar{x}_{2} \bar{x}_{3} x_{4} \oplus x_{1} \bar{x}_{2} x_{3} \bar{x}_{4} \oplus x_{1} x_{2} \bar{x}_{3} \bar{x}_{4}
$$

¿From Theorem 3.1(4b) and Theorem 3.2(4) it follows that $L_{K(\mathrm{dddd})}^{\&}\left(\bar{p}_{4}\right)=\left\lfloor\frac{2}{3} 2^{4}\right\rfloor=10$ but $L_{K}^{\&}\left(\bar{p}_{4}\right)<10$. This example shows that $L_{K}^{\&}\left(\bar{p}_{4}\right) \leq 6<10$.

It is easily shown that Kronecker class contains all well-known Kronecker Expansions [1]. Theorem 3.2(2) give a formula to compute their coefficients.

3.3 Free Kronecker class

Let $F K$ be the class of bundles constructing by the rules
(i) $\quad(e, p) \in F K, \quad(p, d) \in F K, \quad(\mathrm{~d}, e) \in F K$;
(ii) if $A \in F K$ and $\mathrm{B}_{\tilde{0}}, \ldots, \mathrm{~B}_{\tilde{1}} \in F K$, then wreath product of $\mathrm{B}_{\tilde{0}}, \ldots, \mathrm{~B}_{\tilde{1}}$ by \mathcal{A} belongs to $F K$;
(iii) if $A \in F K$, then any permutation of A belongs to $F K$.

The class FK is called Free Kronecker class.
Theorem 3.3 The following conditions hold:
(1) if $\mathrm{T} \in F K$, then T is a base bundle;
(2) if $\mathrm{T} \in F K$ and $f \in F_{n}$, then the coefficients of representation $(*)$ are given by

$$
\alpha_{\tilde{\tau}}=\sum_{\tilde{\sigma} \in N_{\tilde{\tau}}} f(\tilde{\sigma})
$$

where $N_{\tilde{\tau}}=\left\{\tilde{\sigma} \mid \sigma_{i}=0\right.$ if $\mathrm{t}^{\tilde{\tau}_{i}}=e, \quad \sigma_{i}=1$ if $\left.\mathrm{t}^{\tilde{\tau}_{i}}=\mathrm{p}\right\}$ and $\tilde{\tau}_{i}=\left(t a u_{1}, \ldots, \tau_{i-1}, \bar{\tau}_{i}, \tau_{i+1}, \ldots, \tau_{n}\right)$.
(3) $L_{F K}(n)=\frac{1}{2} 2^{n}$;
(4) if $f \in F_{n}$, then $L_{F K}^{\&}(f)=\frac{1}{2} 2^{n}$ iff $f \in M_{n}^{*}$.

Example Take the bundle $T=(e p p, e p d, p p d, p p e, p d d, d d d, d d e, e d e)$. It is clear that T is not two-generated. Let us show that $\mathrm{T} \in F K$.

Consider the bundles

$$
\begin{array}{ll}
\mathrm{B}_{1}=W((\mathrm{~d}, e) \mid(p, \mathrm{~d}),(\mathrm{d}, e)), & \mathrm{B}_{2}=W((e, p) \mid(\mathrm{p}, \mathrm{~d}),(\mathrm{d}, e)), \\
\mathrm{B}_{3}=I\left(\mathrm{~B}_{1} \mid 2,1\right), & \mathrm{B}_{4}=W\left((\mathrm{p}, \mathrm{~d}) \mid \mathrm{B}_{2}, \mathrm{~B}_{3}\right) .
\end{array}
$$

Thus $\mathrm{T}=I\left(\mathrm{~B}_{4} \mid 2,1,3\right)$.
Suppose $g=x_{1} x_{2} x_{3}, f=(01101101)$. Using T and g, we have the representation

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \bar{x}_{2} \bar{x}_{3} \oplus \bar{x}_{1} \bar{x}_{2} \oplus \bar{x}_{1} \oplus x_{3}
$$

Thus we have $L_{F K}^{\&}(f) \leq 4<L_{K}^{\&}(f)=5$. Using Theorem 3.3(4), it follows that $L_{F K}^{\&}(f)=4$.
It can be proved that Free Kronecker class contains all Free Kronecker Expansions [1].

3.4 a-Extended Classes

Let a be an operator. The class of all extensions of two-generated bundles by the operator a is called a-Extended class and is denoted by $E(a)$.

Let us remark that not for any two-generated bundle there exist an extension of this bundle by the operator a.
Theorem 3.4 The following conditions hold:
(1) if $T \in E(a)$, then T is a base bundle;
(2) if $T \in E$ (a) and $f \in F_{n}$, then the coefficients of representation (*) are given by

$$
\alpha_{\tilde{\tau}}= \begin{cases}\sum_{\tilde{\sigma}} h(\tilde{\sigma}) \cdot f(\tilde{\sigma}), & \text { if } \mathrm{t}^{\tilde{\tau}} \neq \mathrm{a}, \text { where } h(\tilde{x})=\mathrm{t}^{\overline{\tilde{\tau}}} g(\overline{\tilde{x}}) \oplus \mathrm{a} g(\overline{\tilde{x}}) \\ \sum_{\tilde{\sigma}} h(\tilde{\sigma}) \cdot f(\tilde{\sigma}), & \text { if } \mathrm{t}^{\tilde{\tau}}=\mathrm{a}, \text { where } h(\tilde{x})=\mathrm{t}^{\overline{\tilde{\tau}}} g(\overline{\tilde{x}}) ;\end{cases}
$$

(3) $L_{E(\mathrm{a})}(n)=\frac{1}{2} 2^{n}$;
(4) if $f \in F_{n}$, then $L_{E(\mathrm{~d} \ldots \mathrm{~d})}^{\&}(f)=\frac{1}{2} 2^{n}$ iff $\frac{1}{2} 2^{n} \leq \sum_{\tilde{\tau}} f(\tilde{\tau}) \leq \frac{1}{2} 2^{n}+1$.

Example Let $\mathrm{T}=D(\mathrm{ddd}, \mathrm{ppp})$, let $\mathrm{a}=$ eee. Consider the bundle

$$
A=(d d d, d d p, d p d, d p p, e e e, p d p, p p d, p p p)
$$

Clearly, the bundle A is an extension of the bundle T by the operator a. It follows that the bundle A belongs to eee-Extended class. Let $f=(01101101)$ and $g=x_{1} x_{2} x_{3}$ be the functions. Using T and g, we get the following representation:

$$
f=1 \oplus \bar{x}_{3} \oplus \bar{x}_{2} \bar{x}_{3} \oplus \bar{x}_{1} \oplus \bar{x}_{1} \bar{x}_{2} \oplus \bar{x}_{1} \bar{x}_{2} \bar{x}_{3}
$$

If we use the bundle A, we have

$$
f=\bar{x}_{2} \oplus x_{1} x_{2} x_{3} \oplus \bar{x}_{1} \bar{x}_{3}
$$

Thus we obtain $L_{E(e e e)}^{\&}(f) \leq 3$. Note that, using Theorem 3.4(4), we have $L_{E(\mathrm{ddd})}(f)=4$.

3.5 Extended Class

The class of all extensions of two-generated bundles by any operator is called Extended class and is denoted by E.

It is obvious that $E=\bigcup_{\mathrm{a}} E(\mathrm{a})$.
Theorem 3.5 The following conditions hold:
(1) if $T \in E$, then T is a base bundle;
(2) if T is an extension by an operator a and $f \in F_{n}$, then the coefficients of representation (*) are given by

$$
\alpha_{\tilde{\tau}}= \begin{cases}\sum_{\tilde{\sigma}} h(\tilde{\sigma}) \cdot f(\tilde{\sigma}), & \text { if } \mathrm{t}^{\tilde{\tau}} \neq \mathrm{a}, \text { where } h(\tilde{x})=\mathrm{t}^{\overline{\tilde{\tau}}} g(\overline{\tilde{x}}) \oplus \mathrm{a} g(\overline{\tilde{x}}) \\ \sum_{\tilde{\sigma}} h(\tilde{\sigma}) \cdot f(\tilde{\sigma}), & \text { if } \mathrm{t}^{\tilde{\tau}}=\mathrm{a}, \text { where } h(\tilde{x})=\mathrm{t}^{\bar{\tau}} g(\overline{\tilde{x}}) ;\end{cases}
$$

(3) $\left\lceil\frac{1}{3} 2^{n}\right\rceil \leq L_{E}(n)<\frac{1}{2} 2^{n}$;
(4) if $f \in M_{n}^{*}$, then $L_{E}^{\&}(f)=\left\lceil\frac{1}{3} 2^{n}\right\rceil$.

Let us remark that the functions $f \in M_{n}^{*}$ are not the most complex functions in Extended class if $n \geq 5$.
Example Consider the function $f=(0111000100011000100001100110$ 1001). Let

$$
\begin{aligned}
& T=(\quad \text { eeeee, } d d d d p, d d d p d, d d d p p, d d p d d, d d p d p, d d p p d, d d p p p \\
& \text { dpddd, dpddp, dpdpd, dpdpp, dppdd, dppdp, dpppd, dpppp } \\
& \text { pdddd, pdddp,pddpd,pddpp,pdpdd,pdpdp,pdppd,pdppp } \\
& \text { ppddd,ppddp,ppdpd,ppdpp,pppdd,pppdp,ppppd,ppppp) }
\end{aligned}
$$

be an extension of the bundle D (ddddd, ppppp) by the operator eeeee. Using $g=x_{1} x_{2} x_{3} x_{4} x_{5}$ and T , we have the representation

$$
\begin{aligned}
& f=\bar{x}_{4} \bar{x}_{5} \oplus \bar{x}_{3} \bar{x}_{5} \oplus \bar{x}_{3} \bar{x}_{4} \oplus \bar{x}_{3} \bar{x}_{4} \bar{x}_{5} \oplus \bar{x}_{2} \bar{x}_{5} \oplus \bar{x}_{2} \bar{x}_{4} \oplus \bar{x}_{2} \bar{x}_{4} \bar{x}_{5} \oplus \bar{x}_{1} \bar{x}_{3} \oplus \\
& \bar{x}_{1} \bar{x}_{3} \bar{x}_{4} \bar{x}_{5} \oplus \bar{x}_{1} \bar{x}_{2} \oplus \bar{x}_{1} \bar{x}_{2} \bar{x}_{4} \bar{x}_{5} \oplus \bar{x}_{1} \bar{x}_{2} \bar{x}_{3} \oplus x_{1} x_{2} x_{3} x_{4} x_{5} .
\end{aligned}
$$

Our computer experiments show that $L_{E}^{\&}(f)=13$. Let us remark that $L_{E}^{\&}(f)>L_{E}^{\&}\left(p_{5}\right)$ but $L_{K}^{\&}(f)<L_{K}^{\&}\left(p_{5}\right)$ and $L_{F K}^{\&}(f)<L_{F K}^{\&}\left(p_{5}\right)$.

As far as we know, Extended class has been not yet discussed in the literature.

3.6 Other Classes

$$
G(a) \text {-classes }
$$

Let a be an operator. The class of all one-generated bundles by the operator a is called $a-$ generalized and is denoted by $G(a)$.

G-class

The class of all one-generated bundles is called generalized and is denoted by G.
Let us remark that the classes G (d...d) contain all GRM forms [1].

T-class

On the operators $\mathrm{a}=a_{1} \ldots a_{n}$ and $\mathrm{b}=b_{1} \ldots b_{n}$ we define an operation "o" as follows:

$$
\mathrm{a} \circ \mathrm{~b}=\left\{1, \text { if } a_{i} \neq b_{i} \text { for all } i ; 0, \text { otherwise } .\right.
$$

For a bundle of operators $A=\left(a^{\tilde{0}}, \ldots, a^{\tilde{\tau}}, \ldots, a^{\tilde{1}}\right)$ we define matrix M_{A} as follow:

$$
M_{A}=\left(\begin{array}{ccccc}
a^{\tilde{1}} \circ a^{\tilde{0}} & \cdots & a^{\tilde{1}} \circ a^{\tilde{\tau}} & \cdots & a^{\tilde{1}} \circ a^{\tilde{1}} \\
\cdots & & \cdots & & \cdots \\
a^{\tilde{0}} \circ a^{\tilde{0}} & \cdots & a^{\tilde{0}} \circ a^{\tilde{\tau}} & \cdots & a^{\tilde{0}} \circ a^{\tilde{1}}
\end{array}\right) .
$$

A bundle A belongs to the class T iff M_{A} has triangle form. It follow that A is a base bundle. Remark. All well-known classes of ESOP belong T

$$
O F \text {-class }
$$

The class of all base bundles is denoted by $O F$.
Theorem 3.6 Let $\operatorname{ESOP}(f)=S_{1} \oplus \ldots \oplus S_{m}$ be a minimal ESOP of a function f. Then there exists a base bundle $\mathrm{T}=\left(\mathrm{t}^{\tilde{0}}, \ldots, \mathrm{t}^{\tilde{\tau}}, \ldots, \mathrm{t}^{\tilde{1}}\right)$ such that for any S_{i} there exist a vector $\tilde{\tau}$ such that $S_{i}=\mathrm{t}^{\tilde{\tau}}\left(x_{1} \cdot \ldots \cdot x_{n}\right)$.
Remark 1. The class of all base bundles with respect to the function $x_{1} \cdot \ldots \cdot x_{n}$ equal to Inclusive Forms [2] by complexity of representations.
Remark 2. There exists an efficient algorithm to construct a base bundle from minimal ESOP [3].

4 Hierarchy

Each class contains all classes which are below of it on the diagram. For example, $F K$ contains K.

Diagram 1. The hierarchy of the classes of operator forms.
The class $K(\mathrm{a})$ contains all FPRM when $\mathrm{a}=\mathrm{d} \ldots \mathrm{d}$. The class $G(\mathrm{a})$ contains all GRM when $\mathrm{a}=\mathrm{d} \ldots \mathrm{d}$. The class K contains all KRO. The class $F K$ contains all FKE. All abbreviations are from [1].

5 Conclusions

There are a lot of classes of operator forms which we didn't show on the diagram 1. We don't have well-represented definitions and non-trivial bounds for the Shannon function for them. All bounds for the Shannon function look like

$$
L_{R}^{\&}(n) \leq c \cdot 2^{n}
$$

where c is a constant. The estimation $L_{O F}^{\&}(n) \leq \frac{29}{128} \cdot 2^{n}$ was obtained in [8] by using a computer. Although, there is an upper bound $L_{O F}^{\&} \leq \frac{\log _{2} n+1}{n} \cdot 2^{n}$ which was obtained by the theoretical way [6]. It is interested to derive a class R (a sequence of classes R_{i}) for which the following estimation is true $L_{R}^{\&}(n) \leq c(n) 2^{n}$, where $c(n) \rightarrow 0$ as $n \rightarrow \infty$.

6 Acknowledgments

This research was partially supported by Grant from Russian Foundation for Basic Research N 01-00-00556.

References

[1] M. Perkowski, L. Jóźwaik, and R. Drechsler. New hierarchies of and/exor trees, decision diagrams, lattice diagrams, canonical forms, and regular layouts // $3^{\text {rd }}$ International Workshop on Applications of the Reed-Muller Expansions in Circuit Design, Sept. 19-20, 1997, Oxford. - Oxford, 1997. - P. 115-132.
[2] M. Chrzanowska-Jeske, M. Perkowski, and A. Mishchenko. How to catch the golden fish of minimum ESOP into the net of canonical forms.
[3] Some questions of the theory of Boolean functions / Ed. N. Peryazev and S. Vinokurov. M.: FIZMATLIT, 2001. - 192 p. (Russian) http://www.isu.ru/facs/math/unc/kafedra/diskret/monograph
[4] C. P. Schnorr. Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen // Computing. Archiv für elektronisches Rechnen. - 1974. - V. 13, N 2. - P. 155-171.
[5] A. Gaidukov, S. Vinokurov. Operator polynomial axpansions of Boolean functions $/ / 4^{\text {th }}$ International Workshop on Boolean Problems. Freiberg, Germany, 2000. P. 63-69.
[6] K. Kirichenko. An upper bound on the Shannon function in ESOPs // Optimization Methods and their Applications, 2001, Irkutsk, Baikal. Section 5. Discrete Mathematics. Irkutsk, 2001. P. 66-70. (Russian)
[7] S. Even, I. Kohavi, A. Paz. On minimal modulo 2 sums of products for switching function // IEEE Trans. Elect. Comput., Oct. 1967. P. 671-674.
[8] A. Gaidukov. Algorithm to derive MESOP for 6 -variable function $/ / 5^{\text {th }}$ International Workshop on Boolean Problems. Freiberg, Germany, 2002.
[9] A. Al-Rabadi and M. Perkowski. Multiple-Valued Galoas Field S/D Trees for GFSOP Minimization and their Complexity. "Proc. of the International Symposium on Multiple-Valued Logic", Warsaw, Poland, 22-24 May, 2001. P.159-166.

