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Abstrat

The paper presents a lassi�ation of the lasses of operator anonial forms of Boolean

funtions. These representations extend well-known exlusive-or sum-of-produts expres-

sions (ESOPs). We onsider onstruting methods and omplexities of operator represen-

tations.

1 Introdution

This paper ontinues our researh of operator forms of Boolean funtions. Our aim is to

onstrut a hierarhy of lasses of these forms.

The main idea of operator forms is based on the following representation. Some bases of F

n

an be represented as operator images of some funtions. F

n

denotes the spae of all n-variable

Boolean funtions.

We introdue the lass of operators and onstrut bundles of operators. In [3, 5℄, there are

some generating riteria of a base of F

n

by operator images of a funtion f . The hoie of the

funtion f and the bundle determines the anonial forms. In partiular, if we put f = x

1

� ::: �x

n

,

we obtain lasses of ESOP.

In the paper we onsider lasses suh as the following onditions hold: i) the lasses have

`good' de�nitions; ii) there exist formulas to determine oeÆients in representations; iii) bounds

of Shannon funtion were found.

We ompare our hierarhy with the well-known Green/Sasao hierarhy [1℄ and Inlusive

Forms [2℄.

The size of this paper does not permit to present proofs and omparisons with some hierar-

hies [9℄.

2 Bakground

We use the following notation and abbreviations:

| vetor of variables is denoted as ~x = (x

1

; :::; x

n

);

| vetor of onstants is denoted as ~� = (�

1

; :::; �

n

), where �

i

2 f0; 1g,

~

0 = (0; :::; 0),

~

1 = (1; :::; 1),

| vetor (�x

1

; :::; �x

n

) is denoted by ~x;

| symbol

X



are used for summation modulo 2.

A sequene t = t

1

:::t

n

with omponents t

i

2 fe;p;dg is alled an operator; here n is alled

the dimension of operator t and denoted by dim t. An operator t = t

1

:::t

n

regarded as a map

t : F

n

! F

n

is de�ned by the rule tg(~x) = g

n

(~x), where g

0

(~x) = g(~x) and

g

i

(~x) =

8

<

:

g

i�1

(~x) if t

i

= e

g

i�1

(x

1

; :::; x

i�1

; �x

i

; x

i+1

; :::; x

n

) if t

i

= p

�g

i�1

=�x

i

if t

i

= d.

Note that �g=�x

i

is alled the derivative of g with respet to a variable x

i

and is de�ned as

�g=�x

i

= g(~x)� g(x

1

; :::; x

i�1

; �x

i

; x

i+1

; :::; x

n

):

Example Consider the operator t = epd and the funtion g(x

1

; x

2

; x

3

) = x

1

_x

2

_x

3

. We have

g

0

= x

1

_x

2

_x

3

; g

1

= x

1

_x

2

_x

3

; g

3

= x

1

_�x

2

_x

3

; g

4

= (x

1

_�x

2

_x

3

)�(x

1

_�x

2

_�x

3

) = �x

1

x

2

:

Thus we have epd(g) = �x

1

x

2

.



A sequene T = (t

~

0

; :::; t

~�

; :::; t

~

1

) onsisting of 2

n

operators with the same dimensions is alled

a bundle of operators; here n is alled the dimension of the bundle and is denoted by dim T.

A bundle of operators (t

~

0

; :::; t

~�

; :::; t

~

1

) is alled a base bundle if there exists a funtion

g(x

1

; :::; x

n

) suh that ft

~

0

g; : : : ; t

~�

g; : : : ; t

~

1

gg is a basis for F

n

, i.e., for any funtion f 2 F

n

there exists a unique representation

f =

X



~�

�

~�

t

~�

g; where �

~�

2 f0; 1g: (�)

This representation is alled a anonial operator form.

By de�nition, put

L

g

T

(f) =

X

~�

�

~�

:

Let K be a lass of base bundles; then de�ne the omplexity L

g

K

(f) by the rule

L

g

K

(f) = min

T2K

L

g

T

(f)

and de�ne Shannon funtion by the rule

L

g

K

(n) = max

f2F

n

L

g

K

(f):

Example Suppose g = x

1

x

2

x

3

is a funtion, T = (eee; eep; epe; epp;pee;pep;ppe;ppp) is a

bundle of operators. Then we have

eee(g) = x

1

x

2

x

3

eep(g) = x

1

x

2

�x

3

epe(g) = x

1

�x

2

x

3

epp(g) = x

1

�x

2

�x

3

pee(g) = �x

1

x

2

x

3

pep(g) = �x

1

x

2

�x

3

ppe(g) = �x

1

�x

2

x

3

ppp(g) = �x

1

�x

2

�x

3

:

Theorem 2.1 [3℄ Suppose T = (t

~

0

; :::; t

~�

; :::; t

~

1

) is a base bundle; then t

~

0

g; : : : ; t

~�

g; : : : ; t

~

1

g is a

basis for F

n

i�

X



~�

g(~�) = 1.

A funtion is alled a base funtion if

X



~�

g(~� ) = 1.

Theorem 2.2 [3℄ Suppose K is a lass of base bundles, g and h are base funtions; then

L

g

K

(n) = L

h

K

(n):

By de�nition, put L

K

(n) = L

g

K

(n), where g is any base funtion. If g = x

1

� ::: � x

n

then we

write L

&

K

(f) instead of L

g

K

(f).

A bundle T = (t

~

0

; :::; t

~

1

) is alled two-generated if there exist operators a and b suh that

a

i

6= b

i

and

t

~�

i

=

�

a

i

if �

i

= 0

b

i

if �

i

= 1.

This bundle is denoted by D(a;b).

For example, the bundle (dpe;dpd;dde;ddd;ppe;ppd;pde;pdd) is two-generated by dpe

and pdd.

A bundle T = (t

~

0

; :::; t

~

1

) is alled one-generated by an operator a = a

1

:::a

n

if

t

~�

i

= a

i

if �

i

= 0; t

~�

i

6= a

i

if �

i

= 1.

As an example, the bundle (dpe;dpd;dde;ded;ppe;ppd; eee;pdp) is one-generated by dpe.

Let T = (t

~

0

; :::; t

~

1

) be a two-generated bundle. It follows that there exist two operators b

and  suh that T = D(b; ). Let a be an operator suh that a

i

6= b

i

and a

i

6= 

i

for any i. Let

B = (b

~

0

; :::;b

~

1

) be a bundle and let ~� be a vetor suh that b

~�

= t

~�

for all ~� 6= ~� and b

~�

= a.

Then the bundle B is alled an extension of the bundle T by the operator a.

In other words, we put the operator a in the bundle T instead of one of the operators t

~�

.

For instane, the bundle (dpe;dpd;dde;ddd;ppe; eep;pde;pdd) is an extension of the bun-

dle D(dpe;pdd) by the operator eep.



Let A = (a

~

0

; :::;a

~

1

) be a bundle suh that dimA = n, let

fB

~�

j B

~�

= (b

~

0

~�

; :::;b

~

1

~�

); ~� = (�

1

; :::; �

n

); �

i

2 f0; 1g; dimB

~�

= mg

be a set onsisting of 2

n

bundles; then the bundle C = (

~

0

; :::; 

~�

; :::; 

~

1

) is alled the wreath

produt of the bundles B

~

0

; :::;B

~

1

by the bundle A if dimC = n+m and



~�

1

: : : 

~�

n

= a

~�

; 

~�

n+1

: : : 

~�

n+m

= b

~�

~�

; where ~� = (�

1

; :::; �

n

) and ~� = (�

n+1

; :::; �

n+m

).

The wreath produt of bundles B

~

0

; :::;B

~

1

by the bundle A is denoted by W (A j B

~

0

; :::;B

~

1

).

Let A = (a

~

0

; :::;a

~�

; :::;a

~

1

), B = (b

~

0

; :::;b

~�

; :::;b

~

1

) be bundles. If there exists a permutation

I = (i

1

; :::; i

n

) suh that b

~�

j

= a

~�

i

j

, then we say that the bundle B is a permutation of the bundle

A and write B = I(A j i

1

; :::; i

n

).

Example Take the bundles A = (ee; ep;pe;dd), B

(00)

= (e;d), B

(01)

= (e;p), B

(10)

= (p;d),

B

(11)

= (d;p). Then

C =W (A j B

00

;B

01

;B

10

;B

11

) = (eee; eed; epe; epp;pep;ped;ddd;ddp);

I(C j 3; 2; 1) = (eee;dee; epe;ppe;pep;dep;ddd;pdd):

Theorem 2.3 [3℄

(1) The wreath produt of base bundles by a base bundle is a base bundle.

(2) Permutation of a base bundle is a base bundle.

Using Theorem 2.3, we an reursively onstrut base bundles.

De�ne the set of funtions M

n

= fp

n

; q

n

; r

n

g by indution on n:

p

0

= 0; q

0

= r

0

= 1;

p

n

= x

n

q

n�1

� �x

n

r

n�1

; q

n

= x

n

r

n�1

� �x

n

p

n�1

; r

n

= x

n

p

n�1

� �x

n

q

n�1

:

In partiular,

p

1

= (11); p

2

= (1001); p

3

= (0111 1110); p

4

= (1110 1001 1001 0111);

q

1

= (01); q

2

= (1110); q

3

= (1001 0111); q

4

= (0111 1110 1110 1001);

r

1

= (10); r

2

= (0111); r

3

= (1110 1001); r

4

= (1001 0111 0111 1110):

Further, de�ne the set of funtions M

�

n

by the rule

M

�

n

= ff j f(x

�

1

1

; :::; x

�

n

n

) 2M

n

; where �

i

2 f0; 1gg:

Let us remark that the funtions �p

n

, �q

n

, and �r

n

were used in [4℄.

3 Classes of Operator Bundles

3.1 a-Kroneker Classes

Let a = a

1

:::a

n

be an operator. By de�nition, put

K(a) = fT j T = D(a;b); where b = b

1

:::b

n

is any operator suh that b

i

6= a

i

g:

The lass K(a) is alled a-Kroneker lass.

Theorem 3.1 The following onditions hold:

(1) if T 2 K(a), then T is a base bundle;

(2) if T 2 K(a) and f 2 F

n

, then the oeÆients of representation (�) are given by

�

~�

=

X



~�

h(~�) � f(~�); where h(~x) = t

~�

g(~x);

(3) L

K(a)

(n) =

�

2

3

2

n

�

;

(4a) if f 2 F

n

and n is odd, then L

&

K(d:::d)

(f) =

�

2

3

2

n

�

i� f 2M

�

n

;



(4b) if f 2 F

n

and n is even, then L

&

K(d:::d)

(f) =

�

2

3

2

n

�

i� f 2M

�

n

[N ,

where N = fh j h = �p

n

(x

�

1

1

; :::; x

�

n

n

); where �

i

2 f0; 1gg.

Example Consider the operator a = ddd. By de�nition, K(ddd) onsists of the bundles:

(ddd;dde;ded;dee; edd; ede; eed; eee); (ddd;ddp;ded;dep; edd; edp; eed; eep);

(ddd;dde;dpd;dpe; edd; ede; epd; epe); (ddd;ddp;dpd;dpp; edd; edp; epd; epp);

(ddd;dde;ded;dee;pdd;pde;ped;pee); (ddd;ddp;ded;dep;pdd;pdp;ped;pep);

(ddd;dde;dpd;dpe;pdd;pde;ppd;ppe); (ddd;ddp;dpd;dpp;pdd;pdp;ppd;ppp):

Suppose g = x

1

�x

2

� x

3

, f = (0110 1101). Then f is represented in the following ddd-Kroneker

forms:

f = x

3

� x

2

� x

1

� x

1

x

3

� x

1

x

2

x

3

; f = 1� �x

3

� x

2

� x

1

�x

3

� x

1

x

2

� x

1

x

2

�x

3

;

f = 1� x

3

� �x

2

� x

1

� x

1

�x

2

x

3

; f = �x

3

� �x

2

� x

1

� x

1

�x

2

� x

1

�x

2

�x

3

;

f = 1� x

2

� x

2

x

3

� �x

1

� �x

1

x

3

� �x

1

x

2

x

3

; f = 1� x

2

�x

3

� �x

1

�x

3

� �x

1

x

2

� �x

1

x

2

�x

3

;

f = x

3

� �x

2

� �x

2

x

3

� �x

1

� �x

1

�x

2

x

3

; f = 1� �x

3

� �x

2

�x

3

� �x

1

� �x

1

�x

2

� �x

1

�x

2

�x

3

:

We obtain L

&

K(ddd)

(f) = 5 =

�

2

3

2

3

�

. On the other hand, we have f(x

1

; x

2

; x

3

) = q

3

(x

1

; �x

2

; x

3

).

It follows that f 2M

�

n

. Combining this with Theorem 3.3 we obtain L

&

K(ddd)

(f) = 5 again.

This example shows that ddd-Kroneker lass ontains all well-known Reed-Muller forms

with �xed polarity of 3-variable funtions. It is obvious that d:::d-Kroneker lasses ontain all

Fixed Polarity Reed-Muller forms [1℄.

3.2 Kroneker Class

The lass of all two-generated bundles is alled Kroneker lass and is denoted by K.

Theorem 3.2 The following onditions hold:

(1) if T 2 K, then T is a base bundle;

(2) if T 2 K and f 2 F

n

, then the oeÆients of representation (�) are given by

�

~�

=

X



~�

h(~�) � f(~�); where h(~x) = t

~�

g(~x);

(3) L

K

(n) =

�

2

3

2

n

�

;

(4) if f 2 F

n

, then L

&

K

(f) =

�

2

3

2

n

�

i� f 2M

�

n

.

Example Consider the funtion �p

4

= (0001 01100110 1000) and the bundle T = D(pppp; eeee).

It is obvious that a 2 K. We have

�p

4

(x

1

; x

2

; x

3

; x

4

) = �x

1

�x

2

x

3

x

4

� �x

1

x

2

�x

3

x

4

� �x

1

x

2

x

3

�x

4

� x

1

�x

2

�x

3

x

4

� x

1

�x

2

x

3

�x

4

� x

1

x

2

�x

3

�x

4

:

>From Theorem 3.1(4b) and Theorem 3.2(4) it follows that L

&

K(dddd)

(�p

4

) =

�

2

3

2

4

�

= 10 but

L

&

K

(�p

4

) < 10. This example shows that L

&

K

(�p

4

) � 6 < 10.

It is easily shown that Kroneker lass ontains all well-known Kroneker Expansions [1℄.

Theorem 3.2(2) give a formula to ompute their oeÆients.

3.3 Free Kroneker lass

Let FK be the lass of bundles onstruting by the rules

(i) (e;p) 2 FK ; (p;d) 2 FK ; (d; e) 2 FK ;

(ii) if A 2 FK and B

~

0

; :::;B

~

1

2 FK , then wreath produt of B

~

0

; :::;B

~

1

by A belongs to FK ;

(iii) if A 2 FK , then any permutation of A belongs to FK .

The lass FK is alled Free Kroneker lass.

Theorem 3.3 The following onditions hold:

(1) if T 2 FK , then T is a base bundle;

(2) if T 2 FK and f 2 F

n

, then the oeÆients of representation (�) are given by

�

~�

=

X



~�2N

~�

f(~�);



where N

~�

= f~� j �

i

= 0 if t

~�

i

= e; �

i

= 1 if t

~�

i

= pg and ~�

i

= (tau

1

; :::; �

i�1

; ��

i

; �

i+1

; :::; �

n

).

(3) L

FK

(n) =

1

2

2

n

;

(4) if f 2 F

n

, then L

&

FK

(f) =

1

2

2

n

i� f 2M

�

n

.

Example Take the bundle T = (epp; epd;ppd;ppe;pdd;ddd;dde; ede). It is lear that T is

not two-generated. Let us show that T 2 FK.

Consider the bundles

B

1

=W ((d; e) j (p;d); (d; e)); B

2

=W ((e;p) j (p;d); (d; e));

B

3

= I(B

1

j 2; 1); B

4

=W ((p;d) j B

2

;B

3

):

Thus T = I(B

4

j 2; 1; 3).

Suppose g = x

1

x

2

x

3

, f = (0110 1101). Using T and g, we have the representation

f(x

1

; x

2

; x

3

) = x

1

�x

2

�x

3

� �x

1

�x

2

� �x

1

� x

3

:

Thus we have L

&

FK

(f) � 4 < L

&

K

(f) = 5. Using Theorem 3.3(4), it follows that L

&

FK

(f) = 4.

It an be proved that Free Kroneker lass ontains all Free Kroneker Expansions [1℄.

3.4 a-Extended Classes

Let a be an operator. The lass of all extensions of two-generated bundles by the operator

a is alled a-Extended lass and is denoted by E(a).

Let us remark that not for any two-generated bundle there exist an extension of this bundle

by the operator a.

Theorem 3.4 The following onditions hold:

(1) if T 2 E(a), then T is a base bundle;

(2) if T 2 E(a) and f 2 F

n

, then the oeÆients of representation (�) are given by

�

~�

=

8

>

>

<

>

>

:

X



~�

h(~�) � f(~�); if t

~�

6= a, where h(~x) = t

~�

g(~x)� ag(~x)

X



~�

h(~�) � f(~�); if t

~�

= a, where h(~x) = t

~�

g(~x);

(3) L

E(a)

(n) =

1

2

2

n

;

(4) if f 2 F

n

, then L

&

E(d:::d)

(f) =

1

2

2

n

i�

1

2

2

n

�

X

~�

f(~�) �

1

2

2

n

+ 1.

Example Let T = D(ddd;ppp), let a = eee. Consider the bundle

A = (ddd;ddp;dpd;dpp; eee;pdp;ppd;ppp):

Clearly, the bundle A is an extension of the bundle T by the operator a. It follows that the

bundle A belongs to eee-Extended lass. Let f = (0110 1101) and g = x

1

x

2

x

3

be the funtions.

Using T and g, we get the following representation:

f = 1� �x

3

� �x

2

�x

3

� �x

1

� �x

1

�x

2

� �x

1

�x

2

�x

3

:

If we use the bundle A, we have

f = �x

2

� x

1

x

2

x

3

� �x

1

�x

3

:

Thus we obtain L

&

E(eee)

(f) � 3. Note that, using Theorem 3.4(4), we have L

E(ddd)

(f) = 4.

3.5 Extended Class

The lass of all extensions of two-generated bundles by any operator is alled Extended lass

and is denoted by E.

It is obvious that E =

S

a

E(a).

Theorem 3.5 The following onditions hold:

(1) if T 2 E, then T is a base bundle;



(2) if T is an extension by an operator a and f 2 F

n

, then the oeÆients of representation (�)

are given by

�

~�

=

8

>

>

<

>

>

:

X



~�

h(~�) � f(~�); if t

~�

6= a, where h(~x) = t

~�

g(~x)� ag(~x)

X



~�

h(~�) � f(~�); if t

~�

= a, where h(~x) = t

~�

g(~x);

(3)

�

1

3

2

n

�

� L

E

(n) <

1

2

2

n

;

(4) if f 2M

�

n

, then L

&

E

(f) =

�

1

3

2

n

�

.

Let us remark that the funtions f 2 M

�

n

are not the most omplex funtions in Extended

lass if n � 5.

Example Consider the funtion f = (0111 0001 0001 1000 1000 0110 0110 1001). Let

T = ( eeeee;ddddp;dddpd;dddpp;ddpdd;ddpdp;ddppd;ddppp

dpddd;dpddp;dpdpd;dpdpp;dppdd;dppdp;dpppd;dpppp

pdddd;pdddp;pddpd;pddpp;pdpdd;pdpdp;pdppd;pdppp

ppddd;ppddp;ppdpd;ppdpp;pppdd;pppdp;ppppd;ppppp )

be an extension of the bundle D(ddddd;ppppp) by the operator eeeee. Using g = x

1

x

2

x

3

x

4

x

5

and T, we have the representation

f = �x

4

�x

5

� �x

3

�x

5

� �x

3

�x

4

� �x

3

�x

4

�x

5

� �x

2

�x

5

� �x

2

�x

4

� �x

2

�x

4

�x

5

� �x

1

�x

3

�

�x

1

�x

3

�x

4

�x

5

� �x

1

�x

2

� �x

1

�x

2

�x

4

�x

5

� �x

1

�x

2

�x

3

� x

1

x

2

x

3

x

4

x

5

:

Our omputer experiments show that L

&

E

(f) = 13. Let us remark that L

&

E

(f) > L

&

E

(p

5

) but

L

&

K

(f) < L

&

K

(p

5

) and L

&

FK

(f) < L

&

FK

(p

5

).

As far as we know, Extended lass has been not yet disussed in the literature.

3.6 Other Classes

G(a)-lasses

Let a be an operator. The lass of all one-generated bundles by the operator a is alled a-

generalized and is denoted by G(a).

G-lass

The lass of all one-generated bundles is alled generalized and is denoted by G.

Let us remark that the lasses G(d:::d) ontain all GRM forms [1℄.

T -lass

On the operators a = a

1

:::a

n

and b = b

1

:::b

n

we de�ne an operation "Æ" as follows:

a Æ b = f 1; if a

i

6= b

i

for all i; 0; otherwise:

For a bundle of operators A = (a

~

0

; :::;a

~�

; :::;a

~

1

) we de�ne matrix M

A

as follow:

M

A

=

0

�

a

~

1

Æ a

~

0

� � � a

~

1

Æ a

~�

� � � a

~

1

Æ a

~

1

� � � � � � � � �

a

~

0

Æ a

~

0

� � � a

~

0

Æ a

~�

� � � a

~

0

Æ a

~

1

1

A

:

A bundle A belongs to the lass T i�M

A

has triangle form. It follow that A is a base bundle.

Remark. All well-known lasses of ESOP belong T

OF -lass

The lass of all base bundles is denoted by OF .

Theorem 3.6 Let ESOP(f) = S

1

� : : :� S

m

be a minimal ESOP of a funtion f . Then there

exists a base bundle T = (t

~

0

; :::; t

~�

; :::; t

~

1

) suh that for any S

i

there exist a vetor ~� suh that

S

i

= t

~�

(x

1

� ::: � x

n

).

Remark 1. The lass of all base bundles with respet to the funtion x

1

� ::: � x

n

equal to

Inlusive Forms [2℄ by omplexity of representations.

Remark 2. There exists an eÆient algorithm to onstrut a base bundle from minimal ESOP

[3℄.



4 Hierarhy

Eah lass ontains all lasses whih are below of it on the diagram. For example, FK

ontains K.

Diagram 1. The hierarhy of the lasses of operator forms.

The lassK(a) ontains all FPRM when a = d : : :d. The lass G(a) ontains all GRM when

a = d : : :d. The lass K ontains all KRO. The lass FK ontains all FKE. All abbreviations

are from [1℄.

5 Conlusions

There are a lot of lasses of operator forms whih we didn't show on the diagram 1. We don't

have well-represented de�nitions and non-trivial bounds for the Shannon funtion for them. All

bounds for the Shannon funtion look like

L

&

R

(n) �  � 2

n

;

where  is a onstant. The estimation L

&

OF

(n) �

29

128

�2

n

was obtained in [8℄ by using a omputer.

Although, there is an upper bound L

&

OF

�

log

2

n+1

n

� 2

n

whih was obtained by the theoretial

way [6℄. It is interested to derive a lass R (a sequene of lasses R

i

) for whih the following

estimation is true L

&

R

(n) � (n)2

n

, where (n)! 0 as n!1.
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