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ABSTRACT. In the paper, we consider an optimal control problem by differ-
ential boundary condition of parabolic equation. We study this problem in
the class of smooth controls satisfying certain integral constraints. For the
problem under consideration we obtain a necessary optimality condition and
propose a method for improving admissible controls. For illustration, we solve
one numerical example to show the effectiveness of the proposed method.

1. Introduction. Problems of optimal control by boundary condition of parabolic
equation arise in modeling of processes of the thermal conductivity, diffusion, filter-
ing [3, 4, 5, 6, 7, 10]. In particular, such problems describe mass transfer processes
in column-type apparatuses, taking into account the longitudinal mixing. Control
functions in these problems represent flows of raw materials or finished products
[5, 6].

A fundamental difference from classical statements of optimal control problems
[8, 9] is the investigation of problems in the class of smooth admissible controls and
classical solutions [11] of initial-boundary problems.

In this paper, we study the problem in the class of smooth controls that satisfy
the integral constraint. It is impossible to use optimal control methods based on
Pontryagin’s maximum principle. These methods are focused on the classes of dis-
continuous controls. We apply approach [1, 2] which is based on using a special
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variation that provides smoothness of controls and satisfaction the integral con-
straint.

The paper is organised as follows. Section 2 formulates the problem for the paper.
In the following section, we obtain an increment formula for the cost functional.
Section 4 is devoted to the necessary optimality condition. In Section 5, we describe
a general scheme of the method which is based on the optimality condition. A
numerical experiment is presented for illustration in Section 6 and the paper ends
with some concluding remarks in Section 7.

2. Problem statement. Consider the equation

Tt — Tss :f(s,t), (1)

II=5x T, S = [So,Sﬂ,T = [to,tl],
where z = x(s,t) is a state function.

Initial-boundary conditions take the form

z(s,to) =2°(s), s€S; zs(s1,t) = q(t),

x¢(s0,t) = g(x(so,t),u(t),t), teT. (2)

Here u(t) is a smooth control on segment T and satisfies the integral constraint

/ B(u(t)) dt = M, (3)

T

where M is a constant and function ® satisfies the following condition
O(Au) = AD(u), a>1.

The problem is to minimize the functional
J(u) = /(p(x(s,tl),s) der//F(x,s,t) dsdt, (4)
s i

defined on the solutions of the problem (1), (2) under admissible control functions
(3).

We study the problem (1) — (4) under the following suppositions:

1) functions f(s,t), 2°(s), q(t) are continuous with respect to their arguments on
the set I, S, and T', respectively;

2) functions F'(z,s,t) and ¢(z,s) are continuous with respect to their arguments,
and they have continuous and bounded partial derivatives with respect to state
function x;

3) function g(x,u,t) is continuous and continuously differentiable, and has bounded
partial derivatives with respect to x and w.

We understand the solution to problem (1), (2) that corresponds to control (3)
in the classical sense (as continuous and continuously differentiable one)[11].
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3. Increment formula for the cost functional. Consider two admissible pro-
cesses, namely, the initial process {u,z} and the perturbated one {u = u+ Au,z =
x+ Az}. Define Dz = x; — 255. Then the problem is written in the following form

DAz =0,

Ax(s,tg) =0, s€S5; Axg(s,t)=0, teT,
Amt(SOat) = Ag(I(SO,t)7U(t),t)7 (5)

AJ(w) =J@) — J(u) = /Ago(x(s,tl),s) ds + // AF(z,s,t)dsdt.
5 i

Add the following terms to the increment formula for the cost functional to obtain

Lagrangian functional
// ¥(s,t)DAx ds dt,
n

/ p(®)[ Az (50, 1) — Ag(x(s0, ), u(t), )] dt.
T

Applying integration by parts, we have

AJ(u) —S/Acp(z(s,tl),s) ds—&—r{/AF(x,s,t) dsdt

+ /[w(s,tl)A:c(s,tl) — (s, to)Ax(s, tg)] ds — //th:v ds dt

S

- /[w(sl,t)Axs(sl,t) — (80, t)Ax4(s0,t) — s Ax(s1,t) + Vs Ax(so, t)] dt
T

— // YssAx dsdt 4+ p(t1)Ax (s, t1) — p(to) Az (s, to)
It

- /ptAa:(so,t) dt — /p(t)Ag dt.
T T

Introduce the following auxiliary function

h(p(t), z(s0, 1), u(t), t) = p(t) - g(x(s0, 1), u(t), ).
Then

Ah(p,z,u,t) = h(p, T, u,t) — h(p, z,u,t).

Add and subtract the following term h(p, z,%,t). Then, we get

Ah(p,z,u,t) = Ahg(p, z,u,t) + Ahz(p, x, U, t).
Use the following expansions

Ap(a(s,t1),5) = ng,m + o, (|Az(s, 1)),

OF (z,s,t)

AF(z,s,t) = 3
x

Ax(s,t) + op(|Ax(s,t)]),
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Oh(p, z(so,1),u,t)
Ox

Let functions (s, t), p(t) be solutions to the following adjoint problem (a first-order

necessary optimality conditions with respect to state function for Lagrangian)

D*w ZFI(.%', S,t)7 ¢(S,t1) = —%(90(87151)78),
w(807t) = 0) ,(/}S(Slat) = O, (6)
Pt = —he —1s(s0,t), p(t1) =0,

where D*1) = 1)y + 1)gs.
Then, the increment formula for the functional takes the form

J(u) =— /[@I(x(s,tl), s) + (s, t1)]Ax(s, t1) + 0p(|Az(s, t1)]) dt

Azh(p, z(s0,t),u,t) = Ax(so,t) + on(|Az(so,1)]).

T
<—/]Pm+w%s—quxw¢>—«mqu@JMﬁww
I
— /wsAx(sl, t) dt + p(t1)Ax(sg,t1)

—/Ammmm%wmwmm—/m+%mw
T T

+ ha(p, 2(s0, 1), U, t)|Az(s0,t) + on(|Az(s, o)]) dt.
Transform the term
he(p, x(s0,t), 0, t) = he(p, x(s0,t), 0, t) £+ he(p, z(s0,t), u,t)
= ha(p,x(s0,t),u,t) + Aghy(p, z(so,t), u,t).
Then, we get

AJ(w) = = [ Aghlp(e) (50, ), ult). 1) de + . (7)
T

Here

77:/0¢(|A$(57t1)|)ds+//(0F(|Asc(s,t)|)dsdt
11

S

(8)
- /[oh(|Ax(so, t)]) + Azha(p(t), x(s0,t),u(t),t) - Az(sg,t)] dt.
T

Lemma 3.1. If condition (5) is valid the estimation of a state increment (analo-
gously to [12]) takes the form

/|A:c(s,t1)|2ds < K(|Aul?). (9)
S

Here
2 15 I, 2 Lo, 2
K(|Aul?) =(—L7 + —L{L(t; —to)* + —L7) Au” dsdt
€1 €2 €2
I

+ 82(81 - 80)(t1 - to)L%/A’Lﬂdt,
T
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where e1 >0, €3 >0; L>0, Ly >0 (L is Lipschitz constant, L, = Le*(th—t0),

Proof. To get (9), we consider the following trivial equality

0 ://(Axt — Az )(Az(s,t) — 2Ax(so,t)) dsdt = // Az Ax(s,t) dsdt
I I
—// AxgsAx(s,t) dsdt—2/ AxiAx(s,t) dsdt—i—Q/ AxgsAx(sg,t) dsdt
I
= /AmQ(s,t) = ds—Q/Astx(s t)s=s dt+2/ Ax? dsdt
T
- Q/Ax s, t)Ax(so, )\iftl ds + 2// AzAzy(so,t) dsdt

Q/AmsAw(so, |s=se dt — 2 //Axs (Az(sg,t))s dsdt.
T

We obtain
%/Azz(s,tl)der//Awg dsdt
5 i

(10)
:/Aac(s,tl)Ax(smtl)ds—/ Ax(s,t)Agdsdt.

Estimate the right side in (10)

|/Am(s,t1)Ax(so,t1)ds—/ Ax(s,t)Ag dsdt|

g/|Ax(s,t1)Ax(so,t1)|ds+/ Ax(s, ) Ag| dsdt.
S 11

Further, we use the following inequality
(a+b)? < 2a” 4 202,

for any a, b and Young’s inequality

1 1
b < =ea® + —b?
|a|_25a +2€ ,

for any a, b, € > 0. Then, we obtain

1 1
|Az(s, t1)Ax(so,t1)] §§51Ax2(s,t1) + gsz(so,tl), €1 >0,
1

1 1
|Ax(s,t)Ag| < 552A1’2($,t) + T@(Ag)z’ €9 > 0. (11)

Since

Az?(s,t) :(/ Azg(€,t) dé + Ax(so,t))* < 2(/ Axg(€,t)dE)? + 2827 (s, t)

S0 S0

<2(s1 —so)/Am (&,t) dE + 2A2%(s0,t), (s,t) €I,
5
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then

/ Az (s, t) dsdt <2(s1 — s0)? // Ax?(s,t) dsdt
m

" (12)

+2(s1 — 50)/A:172(30,t) dt.
T

Taking into account the assumption of the problem for function g(x(sg,t), u(t),t),
we get

t t
|Aa(s0,1)] < / (L|A(s0,t)| + | Au]) dr < Ly / Auldr, L>0, Ly = Lekti=to),
to to

where L is Lipschitz constant;

|Az(sg,t)|* < L3(t1 — to) / |Aul? dt. (13)
T

Using (11), (12), (13) in (10), we obtain

1
(5550 [ el ) ds + (1= eafor = so?) [ [ 10 dsi
S 11

1 2 1 2 2 1 2 2
11
Fea(s1 — 50)(tr — to) L2 / |Auf? dt.
T

Take numbers &1, &5 such that (3 — 2e1) > 0, (1 — e2(s1 — s0)?) > 0. Then, from
(14), we get estimate (9). O

4. Necessary optimality condition. Since admissible controls belong to the
class of smooth functions, we apply the idea of the general approach [1, 2] based on
using a special variation that provides smoothness of control and satisfaction the
integral constraint. The varied control obeys the formula

Ues(t) = MN)u(t +e8(t)) At) = (1+eb(t)%, teT, (15)

where e € [0,1] is a parameter of variation, () is a twice continuously differentiable
function and satisfies the following conditions

t0§t+5(t)§t1, tefT. (16)

5(t0) - (5(t1) - 0,

16(t)| <1, teT. (17)
Show that control u. s(t) (15) satisfies integral constraint (3).
/@(u&g(t))dt :/CD()\(t)u(t +ed(t)))dt
T T

_ /Ao‘(t)@(u(t+s6(t)))dt _ /(1  6()D(ult + £5(t))) dt.

T
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Denote & =t + e6(t). Then d¢ = (1 + £4(t)) dt and
(ues(t D(u(€))dé = M.
[ [

To decompose the function (14 €d(¢))= in a row on degrees e:

(14 e6(0)F = 14 —b(0) + 5 (- ~ D5 (0) +
G ) D) +

Taking into account that e € [0,1], for convergence of the row (under a@ > 1)
implementation of condition (17) is required. Then the increment formula for the
control function takes the form

Au(t) =ue(t) — u(t ) Al)u(t +d(t)) — u(t)
=(1+8(t)) = u(t + £8(t)) — u?)
1

=1+ ésé( t) + %1(— 1)e262(t) + ..Ju(t + e8(t)) — u(t) as)
=u(t +ed(t)) — u(t) + aeé(t)u(t +ed(t)) + o(e)
=a(t)ed(t) + éu(t)sc;(t) + o(e).
Then, from (7),(8) and using (18), we get
AJw) =— [ (hy - Au)dt+7n
/
_ / h - (()0(t) + éu(t)eé(t) +o(e))dt+ 1
T
1 )
= ¢ [ (hy-a(t) 6()dt —e— [ (hy-u(t)-6(t))dt +m
/ -/
= e [ (i) 500t — =2 (- ult) - SO
T
+ sé /(hu ~u(t))ed(t)) dt + m,
where
m=n— /(hu -o(e)) dt.
Since 6(tg) = 0(t1) = 0 and 1 ~ o(e), we get
AJ(u) = —s/(hu Ca(t) — é(hu cu)) - 8(t) dt + o(e). (19)

T

Increment formula for the functional (19) enables us to formulate a necessary opti-
mality condition (analogously to results obtained in [1, 2]).
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Theorem 4.1. Let {u,x} be the optimal process in the problem, then the following
condition holds

w(t) = hy(p(t), x(so,t), u(t),t) - 4 — é(hu(p(t),x(so,t),u(t), t)-u)y =0, teT,

where p(t) is a solution to the adjoint problem (0).

The convergence result is given in [1, 2]. Study the problem (1) — (4) under
additional suppositions:
1. functional J(u) is bounded from bellow on set of admissible functions;
2. functions F,(x, s,t) and @, (z, s) satisfy Lipschitz conditions with respect to state
function x;
3. function g, (x,u,t) satisfies Lipschitz conditions with respect to function wu.

Then for any admissible initial approximation the method generates a sequence
which is relaxation one

JWrh < J@h), k=0,1,2,..,

and converge in the sense

() = /(Sk(t)wk(t) dt =0, k— oo.
T

5. Method for improvement of admissible control. Let us describe the gen-
eral scheme of the method based on the use of the stated optimality condition [1, 2].
1) Let u*(t) be an admissible control calculated on the k-th iteration.

2) For the control u*(t) find functions x*(s,t) and ¥ (s,t), p*(t) which are the
solutions to problems (1), (2) and (6), respectively.

3) Using obtained solutions, calculate the value of the functional J* = J(u*) and
construct the function

wi(t) = ha(p*(t), 2" (s0, 1), u" (1),1) - @ (1) - é(hu(p’“(t%x’“(Soat)»uk(t),t) ~ub),

that can be consider as a discrepancy of the fulfillment of the optimality condition.
If wi(t) = 0 then the control function u* satisfies the optimality condition and the
iteration process finishes.
4) Let wy(t) # 0, consider a smooth variation of u*(¢)
uF (t) = (1 + exdp (b)) 5 ub (t + 0, (1)),
Vi(t)
0 (t) = ——
K =377

T
Y (t) = (t; — to) max |wr(t)]

My = max | (1)].
k = max |, (¢)]
Here parameter € ia a solution to the one-dimensional minimization problem

ep s J(uF) — min, e €0,1].
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If the calculated value of this parameter is close to zero, then there is no improve-
ment of the functional on the method step.
5) The next approximation is given by the formula

uk+1(t) = ulgk (t).

The stop criterion consists in the fulfillment (on some k-th iteration of the method)
of one of the following conditions.

a) The function u”(t) satisfies (with a given accuracy) the necessary optimality con-
dition. For example, the value of the function wg(¢) at each point t € T is close to
zero if max |wi (£)] <1075,

b) The value of the functional calculated on the previous iteration (that with the
number k — 1) is not improved, for example, Jk— k=1 > 1076,

6. Numerical experiment. Consider the application of the described method
to one test example. The presented computational results are obtained by using
Matlab 7.0. In the square [0, 1] x [0, 1] we consider the optimal control problem

xp — Tes = €°cost, s€[0,1], te€][0,1],

1‘(8,0) =s5+0,3, xs(lvt) =0,

x¢(0,t) = (0, t)u(t), /u(t) dt = 2.

The cost functional takes the form

() = %/(I(S,tl) ()2 ds,
S

where x*(s) = x*(s,t1) is evaluated for the control u*(¢) = 4(1 — ). We solved the
problem by the described method under different initial approximations:

1) The initial control is u®(t) = 2(sin2nt + 1). The value of the functional is
J(u®) = 1.9193.

We have obtained the following results: the value of the cost functional on the
procedure output is J(u*) = 0.00008938, the optimality error is rl{leajg<|wk(t)| =

0.0004261, the total number of iteration equals 24, the stop criterion consisted in
attaining the given accuracy with respect to the functional value.

2) The initial control is u°(t) = 2. The functional value is J(u°) = 1.3247.
We have obtained the following results: J(u*) = 0.0064837, max lwi ()] =

0.02791, the total number of iteration equals 35. The stop criterion is & < 107°
(there is no improvement of the functional on the method step).

In the case of integral constraints the proposed variation for control function
allows to create new values of control. But choosing not constant initial approxi-
mation we obtained better results with respect to discrepancy of the fulfillment of
the optimality condition and value of the functional.

Also the problem was considered under pointwise constraints for control func-
tion. In that case numerical results depended on initial approximation too. It was
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necessary to choose such initial approximation that ranges over a set U. In the
situation we did not get new values of control functions. We had re-sorted existing
ones.

7. Conclusion. In this paper, we proposed the necessary optimality condition in
the class of smooth control. We applied approach [1, 2] which is based on using a
special variation that provides smoothness of control and satisfaction the integral
constraint. The series of numerical experiments is carried out. Numerical experi-
ments showed that computational results depend on choosing initial approximation.
This conclusion was not proved by theoretical reasoning (form of initial approxima-
tion). The numerical experiments show that the proposed method of improving a
smooth control can be effectively used to solve this class of problem.
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